Derived dimensions
DimensionfulAngles.jl also defines derived dimensions that include angle. These are:
DimensionfulAngles.SolidAngleDimensionfulAngles.LuminousFluxDimensionfulAngles.IlluminanceDimensionfulAngles.AngularVelocityDimensionfulAngles.AngularAccelerationDimensionfulAngles.AngularWavelengthDimensionfulAngles.AngularPeriodDimensionfulAngles.AngularWavenumber
This allows, among other things, dispatching on these derived dimensions.
Several units are defined for these derived dimensions, including the steradian for solid angle and RPM for angular velocity.
DimensionfulAngles.jl also provides Periodic a UnitfulEquivalences.jl Equivalence to convert between period, frequency, and angular frequency of a periodic response.
Solid Angle
Solid angle is a two-dimensional angle subtended at a point. In the SI system it has units of $m²/m²=1$ and is non-dimensional. Here, following several proposed systems, it has dimensions of angle squared, 𝐀². See Relation to proposed SI extensions. The SI unit of solid angle is the steradian, which here is defined as $sr=rad²$. The steradian takes SI prefixes and therefore defines many other units (e.g., the millisteradian DimensionfulAngles.msrᵃ). These are documented in Prefixed units.
DimensionfulAngles.SolidAngle — TypeDimensionfulAngles.SolidAngle{T, U}A supertype for quantities and levels of dimension 𝐀 * 𝐀 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
DimensionfulAngles.srᵃ — ConstantsrᵃThe steradian, a unit of spherical angle.
There are 4π sr in a sphere. The steradian is the SI unit of solid angle. Unlike Unitful.sr, which follows SI and is therefor dimensionless, srᵃ has dimensions of Angle squared. Accepts SI prefixes.
Dimension: 𝐀²."
Luminous flux and illuminance
Luminous flux is a measure of perceived power of light and has dimensions of $𝐉*𝐀²$. The SI unit lumen (lm) = candela x steradian is provided as DimensionfulAngles.lmᵃ.
Illuminance is luminous flux per unit surface area and has dimensions of $𝐉*𝐀²*𝐋⁻²$. The SI unit lux (lx) = lumen / meter^2 is provided as DimensionfulAngles.lxᵃ.
DimensionfulAngles.LuminousFlux — TypeDimensionfulAngles.LuminousFlux{T, U}A supertype for quantities and levels of dimension 𝐉 * 𝐀 ^ 2 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
DimensionfulAngles.Illuminance — TypeDimensionfulAngles.Illuminance{T, U}A supertype for quantities and levels of dimension 𝐉 * 𝐀 ^ 2 * 𝐋 ^ -2 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
DimensionfulAngles.lmᵃ — ConstantlmᵃThe lumen, an SI unit of luminous flux.
Defined as 1 cd × sr. Accepts SI prefixes.
Dimension: 𝐉𝐀²."
DimensionfulAngles.lxᵃ — ConstantlxᵃThe lux, an SI unit of illuminance.
Defined as 1 lm / m^2. Accepts SI prefixes.
Dimension: 𝐉𝐀²𝐋⁻²."
Angular velocity and acceleration
Angular velocity has dimensions of angle over time 𝐀/𝐓 and can be used to measure different quantities such as rotational velocity, rotational speed, and angular frequency of a phase angle. Two units of angular velocity are defined: the revolutions per second (RPS) and the revolutions per minute (RPM), provided as DimensionfulAngles.rpsᵃ and DimensionfulAngles.rpmᵃ respectively.
Angular acceleration is the time rate of change of angular velocity and has dimensions of angle over time squared 𝐀/𝐓². No units are defined specifically for this derived dimension.
See also: Periodic.
DimensionfulAngles.AngularVelocity — TypeDimensionfulAngles.AngularVelocity{T, U}A supertype for quantities and levels of dimension 𝐀 * 𝐓 ^ -1 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
DimensionfulAngles.AngularAcceleration — TypeDimensionfulAngles.AngularAcceleration{T, U}A supertype for quantities and levels of dimension 𝐀 * 𝐓 ^ -2 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
DimensionfulAngles.rpsᵃ — ConstantrpsᵃRevolutions per second, a unit of angular velocity defined as 2π rad / s.
This differs from Unitful.rps in that it contains units of angle. Does not accepts SI prefixes.
Dimension: 𝐀 𝐓⁻¹.
See also DimensionfulAngles.radᵃ.
DimensionfulAngles.rpmᵃ — ConstantrpmᵃRevolutions per minute, a unit of angular velocity defined as 2π rad / minute.
This differs from Unitful.rpm in that it contains units of angle. Does not accepts SI prefixes.
Dimension: 𝐀 𝐓⁻¹.
See also DimensionfulAngles.radᵃ.
Angular period, wavenumber, and wavelength
Angular wavenumber has dimensions of angle over length 𝐀/𝐋 and is the spatial analogue of (temporal) angular frequency. It is used to describe responses that are periodic in space.
The angular period (dimensions of time over angle, 𝐓/𝐀) and angular wavelength (𝐋/𝐀) are define as the reciprocal of angular frequency and angular wavenumber, respectively.
No units are defined specifically for these derived dimensions.
See also: Periodic.
DimensionfulAngles.AngularWavelength — TypeDimensionfulAngles.AngularWavelength{T, U}A supertype for quantities and levels of dimension 𝐋 * 𝐀 ^ -1 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
DimensionfulAngles.AngularPeriod — TypeDimensionfulAngles.AngularPeriod{T, U}A supertype for quantities and levels of dimension 𝐓 * 𝐀 ^ -1 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
DimensionfulAngles.AngularWavenumber — TypeDimensionfulAngles.AngularWavenumber{T, U}A supertype for quantities and levels of dimension 𝐀 * 𝐋 ^ -1 with a value of type T and units U.
See also: Unitful.Quantity, Unitful.Level.
Periodic and Dispersion equivalences
For periodic responses there are several analogous ways to measure the repeat period: period T (𝐓, s), frequency f (1/𝐓, Hz=1/s), or angular frequency ω (𝐀/𝐓, rad/s). These are related by
$f = 1/T = ω/2π$.
Analogously, spatial period and frequency are related by
$ν = 1/λ = k/2π$
between wavelength λ (𝐋, m), wavenumber ν (1/𝐋, 1/m), and angular wavenumber k (𝐀/𝐋, rad/m). Additionally an angular period and angular wavelength can be defined analogously as the reciprocal of angular frequency and angular wavenumber.
image-source: Waldir, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons
DimensionfulAngles.jl provides Periodic, a UnitfulEquivalences.jl Equivalence to convert between temporal or spatial period, frequency, angular frequency, and angular period of a periodic response.
It also provides Dispersion, which extends Periodic to convert between temporal and spatial values using a specific dispersion relation (or equivalently a phase velocity as used in the image above)).
DimensionfulAngles.Periodic — TypePeriodic()Equivalence to convert between temporal or spatial period, frequency, angular frequency, and angular period.
These quantities are related by $f = ω/2π = 1/T = 1/(2πT̅)$, where
- $f$ is the (temporal) frequency,
- $ω$ is the (temporal) angular frequency,
- $T$ is the (temporal) period,
- $T̄$ is the (temporal) angular period,
and $ν = k/2π = 1/λ = 1/(2πλ̄)$, where
- $ν$ is the (spatial) frequency (linear wavenumber),
- $k$ is the (spatial) angular frequency (angular wavenumber),
- $λ$ is the (spatial) period (linear wavelength), and
- $λ̄$ is the (spatial) angular period (angular wavelength).
See also DimensionfulAngles.Dispersion
Example
julia> using Unitful
julia> using DimensionfulAngles
julia> uconvert(u"s", 10u"Hz", Periodic())
0.1 s
julia> uconvert(u"radᵃ/s", 1u"Hz", Periodic())
6.283185307179586 rad s⁻¹DimensionfulAngles.Dispersion — TypeDispersion(; dispersion=nothing, dispersion_inverse=nothing)Equivalence to convert between temporal and spatial frequencies using a specific dispersion relation.
This extends the Periodic() equivalence to convert between spatial and temporal quantities based on the provided dispersion relation.
See also DimensionfulAngles.Periodic.
Example
julia> using DimensionfulAngles, Unitful
julia> g = Unitful.gn # gravitational acceleration
9.80665 m s⁻²
julia> deepwater = Dispersion(
dispersion = (k -> √(g*k*θ₀)), dispersion_inverse = (ω -> ω^2/(g*θ₀))
);
julia> uconvert(u"radᵃ/mm", 1.0u"Hz", deepwater)
0.004025678249387654 rad mm⁻¹Some dispersion relations do not have an expressible inverse. In such cases using Roots.jl might be beneficial. For example, here is how we could use the linear water wave dispersion without deep water approximation:
julia> using DimensionfulAngles, Unitful, Roots
julia> g = Unitful.gn # gravitational acceleration
9.80665 m s⁻²
julia> k0 = (2π)u"radᵃ/m" # initial guess: 1m wavelength
6.283185307179586 rad m⁻¹
julia> h = 0.5u"m" # water depth
0.5 m
julia> waterwaves = Dispersion(
dispersion = (k -> √(k*θ₀*g*tanh(k*h/θ₀))),
dispersion_inverse = (ω -> solve(ZeroProblem(k -> k - ω^2/(g*tanh(k*h/θ₀))/θ₀, k0)))
);
julia> uconvert(u"Hz", 0.004025678249387654u"radᵃ/mm", waterwaves)
0.9823052153509486 Hz
julia> h = (Inf)u"m" # water depth
Inf m
julia> waterwaves = Dispersion(
dispersion = ( k -> √(k*θ₀*g*tanh(k*h/θ₀)) ),
dispersion_inverse = (ω -> solve(ZeroProblem(k -> k - ω^2/(g*tanh(k*h/θ₀))/θ₀, k0)))
);
julia> uconvert(u"Hz", 0.004025678249387654u"radᵃ/mm", waterwaves) ≈ 1u"Hz"
trueSyntax
Contents:
Syntax provided by Unitful.jl
DimensionfulAngles.AngularVelocityUnits — TypeDimensionfulAngles.AngularVelocityUnits{U}A supertype for units of dimension 𝐀 * 𝐓 ^ -1. Equivalent to Unitful.Units{U, 𝐀 * 𝐓 ^ -1}.
See also: Unitful.Units.
DimensionfulAngles.AngularVelocityFreeUnits — TypeDimensionfulAngles.AngularVelocityFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐀 * 𝐓 ^ -1. Equivalent to Unitful.FreeUnits{U, 𝐀 * 𝐓 ^ -1}.
DimensionfulAngles.AngularAccelerationUnits — TypeDimensionfulAngles.AngularAccelerationUnits{U}A supertype for units of dimension 𝐀 * 𝐓 ^ -2. Equivalent to Unitful.Units{U, 𝐀 * 𝐓 ^ -2}.
See also: Unitful.Units.
DimensionfulAngles.AngularAccelerationFreeUnits — TypeDimensionfulAngles.AngularAccelerationFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐀 * 𝐓 ^ -2. Equivalent to Unitful.FreeUnits{U, 𝐀 * 𝐓 ^ -2}.
DimensionfulAngles.SolidAngleUnits — TypeDimensionfulAngles.SolidAngleUnits{U}A supertype for units of dimension 𝐀 * 𝐀. Equivalent to Unitful.Units{U, 𝐀 * 𝐀}.
See also: Unitful.Units.
DimensionfulAngles.SolidAngleFreeUnits — TypeDimensionfulAngles.SolidAngleFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐀 * 𝐀. Equivalent to Unitful.FreeUnits{U, 𝐀 * 𝐀}.
DimensionfulAngles.AngularWavenumberUnits — TypeDimensionfulAngles.AngularWavenumberUnits{U}A supertype for units of dimension 𝐀 * 𝐋 ^ -1. Equivalent to Unitful.Units{U, 𝐀 * 𝐋 ^ -1}.
See also: Unitful.Units.
DimensionfulAngles.AngularWavenumberFreeUnits — TypeDimensionfulAngles.AngularWavenumberFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐀 * 𝐋 ^ -1. Equivalent to Unitful.FreeUnits{U, 𝐀 * 𝐋 ^ -1}.
DimensionfulAngles.AngularPeriodUnits — TypeDimensionfulAngles.AngularPeriodUnits{U}A supertype for units of dimension 𝐓 * 𝐀 ^ -1. Equivalent to Unitful.Units{U, 𝐓 * 𝐀 ^ -1}.
See also: Unitful.Units.
DimensionfulAngles.AngularPeriodFreeUnits — TypeDimensionfulAngles.AngularPeriodFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐓 * 𝐀 ^ -1. Equivalent to Unitful.FreeUnits{U, 𝐓 * 𝐀 ^ -1}.
DimensionfulAngles.AngularWavelengthUnits — TypeDimensionfulAngles.AngularWavelengthUnits{U}A supertype for units of dimension 𝐋 * 𝐀 ^ -1. Equivalent to Unitful.Units{U, 𝐋 * 𝐀 ^ -1}.
See also: Unitful.Units.
DimensionfulAngles.AngularWavelengthFreeUnits — TypeDimensionfulAngles.AngularWavelengthFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐋 * 𝐀 ^ -1. Equivalent to Unitful.FreeUnits{U, 𝐋 * 𝐀 ^ -1}.
DimensionfulAngles.LuminousFluxUnits — TypeDimensionfulAngles.LuminousFluxUnits{U}A supertype for units of dimension 𝐉 * 𝐀 ^ 2. Equivalent to Unitful.Units{U, 𝐉 * 𝐀 ^ 2}.
See also: Unitful.Units.
DimensionfulAngles.LuminousFluxFreeUnits — TypeDimensionfulAngles.LuminousFluxFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐉 * 𝐀 ^ 2. Equivalent to Unitful.FreeUnits{U, 𝐉 * 𝐀 ^ 2}.
DimensionfulAngles.IlluminanceUnits — TypeDimensionfulAngles.IlluminanceUnits{U}A supertype for units of dimension 𝐉 * 𝐀 ^ 2 * 𝐋 ^ -2. Equivalent to Unitful.Units{U, 𝐉 * 𝐀 ^ 2 * 𝐋 ^ -2}.
See also: Unitful.Units.
DimensionfulAngles.IlluminanceFreeUnits — TypeDimensionfulAngles.IlluminanceFreeUnits{U}A supertype for Unitful.FreeUnits of dimension 𝐉 * 𝐀 ^ 2 * 𝐋 ^ -2. Equivalent to Unitful.FreeUnits{U, 𝐉 * 𝐀 ^ 2 * 𝐋 ^ -2}.
Prefixed Units
DimensionfulAngles.Esrᵃ — ConstantDimensionfulAngles.EsrᵃA prefixed unit, equal to 10^18 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.Gsrᵃ — ConstantDimensionfulAngles.GsrᵃA prefixed unit, equal to 10^9 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.Msrᵃ — ConstantDimensionfulAngles.MsrᵃA prefixed unit, equal to 10^6 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.Psrᵃ — ConstantDimensionfulAngles.PsrᵃA prefixed unit, equal to 10^15 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.Tsrᵃ — ConstantDimensionfulAngles.TsrᵃA prefixed unit, equal to 10^12 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.Ysrᵃ — ConstantDimensionfulAngles.YsrᵃA prefixed unit, equal to 10^24 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.Zsrᵃ — ConstantDimensionfulAngles.ZsrᵃA prefixed unit, equal to 10^21 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.asrᵃ — ConstantDimensionfulAngles.asrᵃA prefixed unit, equal to 10^-18 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.csrᵃ — ConstantDimensionfulAngles.csrᵃA prefixed unit, equal to 10^-2 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.dasrᵃ — ConstantDimensionfulAngles.dasrᵃA prefixed unit, equal to 10^1 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.dsrᵃ — ConstantDimensionfulAngles.dsrᵃA prefixed unit, equal to 10^-1 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.fsrᵃ — ConstantDimensionfulAngles.fsrᵃA prefixed unit, equal to 10^-15 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.hsrᵃ — ConstantDimensionfulAngles.hsrᵃA prefixed unit, equal to 10^2 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.ksrᵃ — ConstantDimensionfulAngles.ksrᵃA prefixed unit, equal to 10^3 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.msrᵃ — ConstantDimensionfulAngles.msrᵃA prefixed unit, equal to 10^-3 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.nsrᵃ — ConstantDimensionfulAngles.nsrᵃA prefixed unit, equal to 10^-9 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.psrᵃ — ConstantDimensionfulAngles.psrᵃA prefixed unit, equal to 10^-12 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.ysrᵃ — ConstantDimensionfulAngles.ysrᵃA prefixed unit, equal to 10^-24 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.zsrᵃ — ConstantDimensionfulAngles.zsrᵃA prefixed unit, equal to 10^-21 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.μsrᵃ — ConstantDimensionfulAngles.μsrᵃA prefixed unit, equal to 10^-6 srᵃ.
Dimension: 𝐀^2
See also: DimensionfulAngles.srᵃ.
DimensionfulAngles.Elmᵃ — ConstantDimensionfulAngles.ElmᵃA prefixed unit, equal to 10^18 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.Glmᵃ — ConstantDimensionfulAngles.GlmᵃA prefixed unit, equal to 10^9 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.Mlmᵃ — ConstantDimensionfulAngles.MlmᵃA prefixed unit, equal to 10^6 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.Plmᵃ — ConstantDimensionfulAngles.PlmᵃA prefixed unit, equal to 10^15 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.Tlmᵃ — ConstantDimensionfulAngles.TlmᵃA prefixed unit, equal to 10^12 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.Ylmᵃ — ConstantDimensionfulAngles.YlmᵃA prefixed unit, equal to 10^24 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.Zlmᵃ — ConstantDimensionfulAngles.ZlmᵃA prefixed unit, equal to 10^21 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.almᵃ — ConstantDimensionfulAngles.almᵃA prefixed unit, equal to 10^-18 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.clmᵃ — ConstantDimensionfulAngles.clmᵃA prefixed unit, equal to 10^-2 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.dalmᵃ — ConstantDimensionfulAngles.dalmᵃA prefixed unit, equal to 10^1 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.dlmᵃ — ConstantDimensionfulAngles.dlmᵃA prefixed unit, equal to 10^-1 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.flmᵃ — ConstantDimensionfulAngles.flmᵃA prefixed unit, equal to 10^-15 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.hlmᵃ — ConstantDimensionfulAngles.hlmᵃA prefixed unit, equal to 10^2 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.klmᵃ — ConstantDimensionfulAngles.klmᵃA prefixed unit, equal to 10^3 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.mlmᵃ — ConstantDimensionfulAngles.mlmᵃA prefixed unit, equal to 10^-3 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.nlmᵃ — ConstantDimensionfulAngles.nlmᵃA prefixed unit, equal to 10^-9 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.plmᵃ — ConstantDimensionfulAngles.plmᵃA prefixed unit, equal to 10^-12 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.ylmᵃ — ConstantDimensionfulAngles.ylmᵃA prefixed unit, equal to 10^-24 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.zlmᵃ — ConstantDimensionfulAngles.zlmᵃA prefixed unit, equal to 10^-21 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.μlmᵃ — ConstantDimensionfulAngles.μlmᵃA prefixed unit, equal to 10^-6 lmᵃ.
Dimension: 𝐀^2 𝐉
See also: DimensionfulAngles.lmᵃ.
DimensionfulAngles.Elxᵃ — ConstantDimensionfulAngles.ElxᵃA prefixed unit, equal to 10^18 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.Glxᵃ — ConstantDimensionfulAngles.GlxᵃA prefixed unit, equal to 10^9 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.Mlxᵃ — ConstantDimensionfulAngles.MlxᵃA prefixed unit, equal to 10^6 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.Plxᵃ — ConstantDimensionfulAngles.PlxᵃA prefixed unit, equal to 10^15 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.Tlxᵃ — ConstantDimensionfulAngles.TlxᵃA prefixed unit, equal to 10^12 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.Ylxᵃ — ConstantDimensionfulAngles.YlxᵃA prefixed unit, equal to 10^24 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.Zlxᵃ — ConstantDimensionfulAngles.ZlxᵃA prefixed unit, equal to 10^21 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.alxᵃ — ConstantDimensionfulAngles.alxᵃA prefixed unit, equal to 10^-18 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.clxᵃ — ConstantDimensionfulAngles.clxᵃA prefixed unit, equal to 10^-2 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.dalxᵃ — ConstantDimensionfulAngles.dalxᵃA prefixed unit, equal to 10^1 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.dlxᵃ — ConstantDimensionfulAngles.dlxᵃA prefixed unit, equal to 10^-1 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.flxᵃ — ConstantDimensionfulAngles.flxᵃA prefixed unit, equal to 10^-15 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.hlxᵃ — ConstantDimensionfulAngles.hlxᵃA prefixed unit, equal to 10^2 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.klxᵃ — ConstantDimensionfulAngles.klxᵃA prefixed unit, equal to 10^3 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.mlxᵃ — ConstantDimensionfulAngles.mlxᵃA prefixed unit, equal to 10^-3 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.nlxᵃ — ConstantDimensionfulAngles.nlxᵃA prefixed unit, equal to 10^-9 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.plxᵃ — ConstantDimensionfulAngles.plxᵃA prefixed unit, equal to 10^-12 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.ylxᵃ — ConstantDimensionfulAngles.ylxᵃA prefixed unit, equal to 10^-24 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.zlxᵃ — ConstantDimensionfulAngles.zlxᵃA prefixed unit, equal to 10^-21 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.
DimensionfulAngles.μlxᵃ — ConstantDimensionfulAngles.μlxᵃA prefixed unit, equal to 10^-6 lxᵃ.
Dimension: 𝐀^2 𝐉 𝐋^-2
See also: DimensionfulAngles.lxᵃ.